LUMA : DIPLOMA IN MECHANICAL ENGINEERING RSE CODE : ME ESTER : SIXTH FOR ME ECT TITLE : CAD-CAM (ELECTIVE – II) JECT CODE :

Ething and Examination Scheme: Examination Scheme Teaching Scheme TOTAL TW PR /OR TEST PAPER TH PR TU 175-for Sem. ۶H HRS 25 50 25 75 02 03 B 175 - for MPEESS ÷. . 50 (Pr. As) 25 100 03 02

53 Honaie:

The need of today's manufacturing industrial world is based on best quality & precision ented shorter manufacturing cycle time. To satisfy this need the use of CAD/CAM & automation inevitable. To satisfy industrial need, diploma engineer should be able to cope with CAD/CAM inevitable. To satisfy industrial need, diploma engineer should be able to cope with CAD/CAM inevitable. With this intention this subject is introduced in the curriculum. The prerequisites of this efficient have been introduced in earlier subjects such as engineering drawing & machine drawing.

ectives:

のないないでいたいないのないないのである

and the second second

ar and

ASTONAL CONTRACTOR

ient should be able to:

- Understand the fundamentals & use CAD.
 Conceptualize drafting and modelling in CAD.
- 3. Prepare CNC part programming.
- 4. Conceptualize automation and FMS.

Contents: Theory

Chapter	Name of the Topic	Hours	Marks
01	Introduction to CAD/CAM Computers in industrial manufacturing. Product Cycle, CAD/CAM CAD/CAM hardware:- basic structure, CPU, Memory, I/O devices, Storage devices and system configuration	06	06
02	Geometric Modelling Requirement of geometric modelling, Types of geometric models. Geometric construction method-sweep, solid modelling- Primitives & Boolean operations, free formed surfaces (Classification of surface only) (No numerical treatment)	10	16
03	Introduction to computer numerical Control Introduction - NC, CNC, DNC, Advantages of CNC, The coordinate system in CNC, Motion control system - point to point, straight line, Continuou path (Contouring). Application of CNC.	05 18	12
04	Part programming Fundamentals, manual part programming, NC –Words, Programming format, part programming, use of subroutines and do loops, computer aided part programming (APT).	nd 12	16
05	Industrial Robotics Introduction, physical configuration, basic robot motions, technical features such as - work volume, precision and speed movement, weight carrying capacity, drive system, End effect robot sensors. Application – Material transfer, machine loading, welding, spi coating, processing operation, assembly, inspection.	drs, 09	16
06	Automation Basic elements of automated system, advanced automation functions, levels of automation. Flexible manufacturing system :-Introduction, FMS equipmen FMS application, Introduction to CIM	ut 06	09
		48	75

arning Resources:

ooks:

/CAM principles and applicationsP.N. Rao			
CAM/CIMRadhaKrishna P & Subramanyam			
machines P S Babla & M Adithan			
aputer Aided design and ManufacturingGroover MP & Zimmers Jr.			

4

5

